Numerical Methods for Solving Convection-Diffusion Problems
نویسندگان
چکیده
Convection-diffusion equations provide the basis for describing heat and mass transfer phenomena as well as processes of continuum mechanics. To handle flows in porous media, the fundamental issue is to model correctly the convective transport of individual phases. Moreover, for compressible media, the pressure equation itself is just a time-dependent convection-diffusion equation. For different problems, a convection-diffusion equation may be be written in various forms. The most popular formulation of convective transport employs the divergent (conservative) form. In some cases, the nondivergent (characteristic) form seems to be preferable. The so-called skew-symmetric form of convective transport operators that is the half-sum of the operators in the divergent and nondivergent forms is of great interest in some applications. Here we discuss the basic classes of discretization in space: finite difference schemes on rectangular grids, approximations on general polyhedra (the finite volume method), and finite element procedures. The key properties of discrete operators are studied for convective and diffusive transport. We emphasize the problems of constructing approximations for convection and diffusion operators that satisfy the maximum principle at the discrete level — they are called monotone approximations. Twoand three-level schemes are investigated for transient problems. Unconditionally stable explicit-implicit schemes are developed for convection-diffusion problems. Stability conditions are obtained both in finite-dimensional Hilbert spaces and in Banach spaces depending on the form in which the convectionEmail addresses: [email protected] (A. Churbanov), [email protected] (P. Vabishchevich) Preprint submitted to arXiv.org August 29, 2012 diffusion equation is written.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA Recent Development of Numerical Methods for Solving Convection-Diffusion Problems
Convection-Diffusion Problems occur very frequently in applied sciences and engineering. In this paper, the crux of research articles published by numerous researchers during 2007-2011 in referred journals has been presented and this leads to conclusions and recommendations about what methods to use on Convection-Diffusion Problems. It is found that engineers and scientists are using finite ele...
متن کاملA Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion Equations
Convection-diffusion equations are widely used for modeling and simulations of various complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996). Since for most application problems it is impossible to solve convection-diffusion equations analytically, efficient numerical algorithms are becoming increasingly important to numerical simulations involving convection-d...
متن کاملOne-step Taylor–Galerkin methods for convection–diffusion problems
Third and fourth order Taylor–Galerkin schemes have shown to be efficient finite element schemes for the numerical simulation of time-dependent convective transport problems. By contrast, the application of higher-order Taylor–Galerkin schemes to mixed problems describing transient transport by both convection and diffusion appears to be much more difficult. In this paper we develop two new Tay...
متن کاملGalerkin Finite Element Method and Finite Difference Method for Solving Convective Non-linear Equation
The fast progress has been observed in the development of numerical and analytical techniques for solving convection-diffusion and fluid mechanics problems. Here, a numerical approach, based in Galerkin Finite Element Method with Finite Difference Method is presented for the solution of a class of non-linear transient convection-diffusion problems. Using the analytical solutions and the L2 and ...
متن کاملStability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-explicit Time-marching for Convection-diffusion Problems
The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with carefully chosen implicit-explicit (IMEX) Runge-Kutta time discretization up to third order accuracy, for solving one-dimensional linear convection-diffusion equations. In the time discretization the convection term is treated explicitly and the diffusion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1208.5649 شماره
صفحات -
تاریخ انتشار 2012